Technology

Computer Vision Technology Market for Agriculture Global Analysis 2023-2033: Fostering Digital Agriculture through Global Government Initiatives

Published

on

DUBLIN, Feb. 29, 2024 /PRNewswire/ — The “Computer Vision Technology Market for Agriculture: A Global and Regional Analysis, 2023-2033” report has been added to  ResearchAndMarkets.com’s offering.

The computer vision technology market for agriculture was valued at $432.0 million in 2023, and it is expected to grow at a CAGR of 16.78% and reach $2,037.5 million by 2033. The computer vision technology market for agriculture is currently in a dynamic growth phase, marked by rapid advancements and heightened adoption. The market exhibits a degree of fragmentation, with diverse players contributing to specialized applications within the agriculture sector.

Key companies such as Climate LLC, Granular, IBM Corporation, Ceres Imaging, and Deere & Company hold notable market shares, indicating a mix of technology-focused startups and established giants collectively shaping the landscape of computer vision solutions in agriculture. As the market matures, consolidation trends may emerge, influencing the competitive dynamics and further fueling the integration of computer vision technologies into modern farming practices. As of 2022, significant players held around 30% of market shares in the computer vision technology market for agriculture. These percentages underscore the influence of these companies in driving innovation and technology adoption in the agricultural sector, reflecting the evolving landscape of precision farming and broader application of computer vision solutions.

The market is characterized by entities offering innovative solutions designed for the following applications such as biotic stress monitoring, harvest dynamic monitoring, autonomous equipment control, and abiotic stress monitoring in agriculture, with a focus on interpreting and extracting valuable insights from visual data captured through various imaging devices. The products offered by the players in the market have been segmented into data processing and analytics and operational integration and automation.

During the forecast period 2023-2033, the computer vision technology market for agriculture is set to undergo substantial evolution and expansion. Persistent advancements in computer vision technologies will drive the development of more sophisticated and cost-effective solutions for analyzing agricultural data. With an increased emphasis on sustainability and adherence to circular economy principles, governments, industries, and consumers will prioritize the integration of computer vision for optimizing farming practices.

A surge in investments directed toward startups specializing in computer vision for agriculture and dedicated research and development initiatives can be expected. This era presents a golden opportunity for the computer vision technology market for agriculture to mature and firmly establish itself as an indispensable component of the sustainable farming landscape. Companies that swiftly embrace technological advancements and foster effective collaborations are poised for significant growth and a leading position in this transformative market.

Market Segmentation

Biotic Stress Monitoring to Dominate the Computer Vision Technology Market for Agriculture (by Application)

Biotic stress monitoring, encompassing disease, pest, and weed detection, stands as a cornerstone in contemporary agriculture, utilizing cameras to capture various growth stages and enhance production efficiency. This approach empowers farmers to swiftly identify subtle abnormalities in crop development caused by factors such as malnutrition, disease, or pest infestation. The integration of advanced computer vision applications, such as Taranis and Blue River Technology, has become integral to modern farming practices. These technologies analyze vast fields with high-resolution imagery and artificial intelligence algorithms, providing real-time insights. This capability enables farmers to make informed decisions, proactively manage issues such as pest infestations, and optimize resource allocation for improved crop health and productivity, ensuring a more sustainable and efficient future for agriculture.

Biotic stress monitoring through computer vision allows providers to swiftly detect and identify plant diseases or pest infestations. This proactive approach enables timely intervention, minimizes crop damage, and increases agricultural productivity. By leveraging real-time data and image analysis, computer vision providers can offer farmers precise and targeted solutions, optimizing resource utilization and contributing to sustainable farming practices. Overall, biotic stress monitoring enhances efficiency and resilience in agriculture.

Data Processing and Analytics to Dominate the Computer Vision Technology Market for Agriculture (by Product)

The data processing and analytics segment in the computer vision technology market for agriculture is rapidly growing and plays a crucial role in modern farming practices. A report on the “Environmental Benefits of Precision Agriculture in the U.S.” highlights that adopting precision agriculture technologies has resulted in avoiding the application of an estimated 30 million pounds of herbicide. Furthermore, there is potential to avoid an additional 48 million pounds of herbicide with broader adoption of precision agriculture. This underscores the importance of raising awareness about the adoption of advanced technologies such as computer vision in agriculture. Such technologies assist farms in identifying and controlling weed growth at an early stage, preventing the unnecessary overuse of herbicides. This not only benefits the environment but also contributes to more efficient and sustainable farming practices.

Data processing and analytics empower computer vision providers by enhancing the accuracy and efficiency of image recognition algorithms. Through the analysis of vast datasets, these providers can refine their models, improving object detection and classification. Real-time processing enables quicker decision-making in applications such as autonomous vehicles and surveillance. Overall, data-driven insights contribute to the continual advancement and optimization of computer vision systems.

In recent years, the use of computer vision technology in agriculture has grown significantly worldwide, with North America leading the way in its adoption. Precision agriculture initiatives, such as automated crop monitoring and yield prediction, have propelled the region to the forefront, reflecting a progressive approach to enhance agricultural efficiency. For example, in 2020, the University of California, Davis, utilized drones equipped with computer vision for a study. It gathered data on crop health and growth, revealing the technology’s ability to detect early signs of disease and pests. This breakthrough resulted in reduced pesticide use and increased crop yields. The integration of automated drone surveillance and AI-driven image analysis tools on farms underscores North America’s dedication to leveraging advanced technologies for enhanced crop management.

The swift adoption of precision agriculture is also driving the growth of the computer vision technology market for agriculture in North American countries. The integration of AI and computer vision in precision farming is proving to be highly beneficial by optimizing planting, irrigation, and fertilization based on real-time data and can bring about significant input cost savings. According to a report from the Precision Agriculture Development Trust published in 2022, precision farming has the potential to boost crop yields by up to 30%, highlighting the substantial positive impact of technology on modern agriculture practices.

Demand – Drivers, Challenges, and Opportunities

Market Drivers: Advancement of Deep Learning Techniques

Deep learning (DL), a pivotal aspect of artificial intelligence, harnesses artificial neural networks (ANNs) to glean insights from vast datasets and execute diverse tasks. Particularly impactful in computer vision (CV), which pertains to the interpretation and processing of visual information, DL’s applications in agriculture are extensive.In this sector, it facilitates tasks such as crop monitoring, autonomous harvesting, weather analytics, animal health tracking, and plant disease diagnosis.For CV technology providers in agriculture, DL brings multifaceted advantages. It enhances model accuracy and complexity by assimilating insights from extensive data, reducing the risk and cost of crop failures through weather and soil condition analysis, and maximizing crop yield and quality by identifying diseases and optimizing harvesting.

Market Challenges: Navigating Data Ownership and Privacy Challenges

The integration of artificial intelligence (AI) and computer vision in farming and breeding relies heavily on processing data from remote sensors, UAVs, and satellites. While many farmers embrace digitalization, some hesitate to share data due to the lack of clear legal frameworks on issues such as ownership, privacy, cybersecurity, and liability. Some companies have unlawfully shared farm data, raising concerns about data privacy among farmers.The major stakeholders in agricultural data include farmers, agricultural technology providers, input companies, and governments. Computer vision adoption raises concerns about data exposure and identity disclosure to hackers. A survey by the American Farm Bureau Federation revealed that over 75% of farmers worry about data ownership and potential regulatory use, while 60% fear companies influencing market decisions using their agricultural data.

Market Opportunities: Fostering Digital Agriculture through Global Government Initiatives

Government initiatives to promote digital agriculture encompass public-private partnerships and the establishment of a supportive environment for companies, be they established or startups, to introduce computer vision-based products. Notably, the U.S. Department of Agriculture has launched diverse programs leveraging computer vision in agricultural facets such as production, food supply chain, sensor development, ecosystem management, and rural community support. Robotic solutions for tasks such as pollination, pesticide application, weeding, and harvesting are also promoted. The American Research Service collaborates with companies to integrate computer vision and AI in livestock monitoring, irrigation analysis, robotic harvesting, and drone-based crop health monitoring.In India, the state government of Karnataka entered a memorandum of understanding (MoU) with Microsoft in 2007, aiming to enhance agricultural productivity through innovative technologies, primarily computer vision. The Indian government further partnered with IBM to deploy the AI-based Watson Decision Platform for Agriculture, offering accurate weather forecasts and soil information to empower local farmers in making informed decisions on crop and water management. This trend is anticipated to proliferate globally, fostering increased opportunities in the IoT-driven agriculture industry.

Key Market Players and Competition Synopsis

Some of the prominent companies in this market are:

Climate LLCGranular Inc.IBM CorporationCeres ImagingDeere & CompanyProspera TechnologiesAgEagle Aerial Systems Inc (MicaSense)TaranisPrecisionHawk, Inc.GamayaPlantixDJIIteris, Inc.CropIn Technology SolutionsHIPHEN (SlantRange, Inc.)

Segmentation by Application

Biotic Stress MonitoringHarvest Dynamic MonitoringAutonomous Equipment ControlAbiotic Stress Monitoring

Segmentation by Product

Data Processing and AnalyticsOperational Integration and Automation

Segmentation by Region

North America: U.S. and CanadaEurope: France, Germany, Spain, Italy, Belgium, Bulgaria, Ukraine, U.K., and Rest-of-EuropeAsia-Pacific: China, India, Japan, Australia and Rest-of-Asia-PacificLatin America: Brazil and MexicoMiddle East and Africa: Turkey, South Africa, and Rest-of-Middle East and Africa

For more information about this report visit https://www.researchandmarkets.com/r/dvzznp

About ResearchAndMarkets.com
ResearchAndMarkets.com is the world’s leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Media Contact:

Research and Markets
Laura Wood, Senior Manager
press@researchandmarkets.com
 
For E.S.T Office Hours Call +1-917-300-0470
For U.S./CAN Toll Free Call +1-800-526-8630
For GMT Office Hours Call +353-1-416-8900
 
U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716

Logo: https://mma.prnewswire.com/media/539438/Research_and_Markets_Logo.jpg

View original content:https://www.prnewswire.com/news-releases/computer-vision-technology-market-for-agriculture-global-analysis-2023-2033-fostering-digital-agriculture-through-global-government-initiatives-302076280.html

SOURCE Research and Markets

Leave a Reply

Your email address will not be published. Required fields are marked *

Trending

Exit mobile version